
Zeros of Sections of the Zeta Function. I 

By Robert Spira 

1. Introduction. The sections of the title are the Dirichlet polynomials: 

M 

(1) CM(s) = En` 
n=1i 

We write s = c + it, and take 1M6 ? 3. Turain [1], [2] showed that the Riemann hy- 
pothesis would be true provided the zeros of DM(s) all had real parts ? 1 + k1 M"'2, 
for some positive k. The author verified that these real parts were < 1 for M < 
100 and I t I < 1000. Apostol [3] generalized some of Turain's results to L-series. 
The present author's work also raises interest in these zeros in relation to the Rie- 
mann hypothesis for the functions 

(2) gM(s) = CM(S) + X(S)?M(l - s) 

where x(s) is the functional equation multiplier for the c-function, i.e., 

=(S x(s)=(l - s). 
In this paper, theorems on zero-free regions of ~m(s) are derived, the methods 

used for calculating the zeros are given, and the locations of the zeros are described. 
The numerical values (to 6D) of the zeros may be found in Spira [7]. The zeros 
calculated are: 

(a) M: 3(1)12, 0 < t < 100, 
(b) M = 10k, k: 2(1)5 -1 _< a, 0 < t < 100, 
(c) M = 1010, a string of zeros, 0 < t _ 100, 
(d) Sequences of zeros sM ,where sM?1 is obtained by applying Newton's method 

to DM+?(s) with initial approximant SM. The following sequences were calculated: 
M = 4(1)50, S4 = lowest zero; M = 10(1)35, sio = next to lowest zero; 
M = 10(1)40, s1o = .35 + 14.50i; M = 11 ( 1) 50, s11 = .54 + 37.65i; six sequences, 
M = 11(1)25, sli = .60 + 25.00i, .60 + 30.43i, .57 + 32.86i, .57 + 40.86i, 
.53 + 43.25i, .54 + 48.10i. 

Figures 1, 2, and 3 give the zeros (a). Two sequences (d) are also given in Figure 
3. Figure 4 gives the zeros (b) and (c). Papers by Langer [4] and Wilder [5] estimate 
the number of zeros of ~m(s) to be within M of T(log M)/2r. Table I gives the 
number of zeros found and the values of 100(log M)/27r for comparison. 

2. Zero-Free Regions. 
THEOREM 1. If r ? 1.85, VM(s) # 0. 
Proof. 

M ~ M 

| t;M(S ) | _ 1 - E n-a_ > 1 - 2 - M x dx 
-n=2 2 

[2-o' + 21-/.(o - 1)] -1 - 2 '(o + 1)/(o- 1). 
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TABLE I 

M A Numeer of 100 (Log M)/27w Left limit of zeros 

3 17 17.485 -1. 
4 22 22.064 - 1.73050 73579 
5 26 25.615 -2.42601 27644 
6 29 28.517 -3.11889 57337 
7 31 30.970 -3.81199 94585 
8 33 33.095 -4.50517 30392 
9 35 34.970 -5.19834 67486 

10 37 36.647 -5.89151 57183 
11 38 38.164 -6.58468 12961 
12 40 39.549 -7.27784 42797 

102 73 73.294 
103 110 109.940 
104 146 146.587 
105 183 183.234 
1010 366 366.468 

The last five entries for number of zeros means the number found for O- ? -1. 
It is probable that there are no others for t ? 100. 

Since 2 f and (a- + 1 / (- - 1 ) are decreasing functions, we need only seek the root 
of 1 = 2-f(o- + 1)/(a- - 1), which is easily seen to lie to the left of 1.85. 

THEOREM 2. If a- < 1 - M, DM(s) # 0. 
Proof. 

-M-1 M-1 - 

IM(S) ? M --[ n > - [ 1 + 2- + x- d] 

> M- - [1 + 2- + (M - 1)'-'/(1 - C)] 

? M- - [1 + 2f + (M 1)-Of], 

since M - 1 ? 1 - a. Thus RM(s) # 0, provided M f > 1 + 2- + (AI - 1)-f. 
Dividing this last by (M - 1 )a, and noting that the resulting right hand side is 
?2.25 for M1? > 3 our theorem will be true provided [M/(M - 1)]M-l > 2.25. 
Putting m = M - 1, we know by the binomial theorem that (1 + 1/m)m is an in- 
creasing function, so that [M/(M - 1 )]M1 is always >2.25 as it is so for M = 3. 

One can obtain closer bounds in particular cases. 
PROPOSITION. If M > En=, n and a- < -, then M 1'> En=, n 1. 
Proof. Let a- = a-, + k,k > 0. Then M-0 = M-o-+k = M-Mk > mk M n-1 

Zfl'2 1Mkn-= ZM-i n= = En=1 n-', Q.E.D. Thus, the root of M? = 
Zn=M-1 no gives a right hand bound for a zero-free half plane of vM(8) . Column 4 of 
Table I gives this root, rounded to ten places, for 3 <_ M < 12. 

A crude upper bound for this root is - M12, for M ? 18. To show this, let 
x = M"/2, then 

M-1 M-2 

(3) Zna > a xa dx + (M-1)a 
n=1 O 



548 ROBERT SPIRA 

and 
M-2 

jxa dx (M - 2)a+1/(a + 1) = (a-1)((M -2)/(M - 1))(M -2) 

> ((M -2)112 - 1)(6/7)(M - 2) = (6/7)(M -2)a+112 -(6/7)(M - 2)a. 

We can drop the second term as it is overpowered by the second term of (3), so we 
need only show 6(M - 2)a?1I2 > Mc. After dividing by (M - 2)a and setting 
m = M - 2, this transforms to Wm/2 > (1 + 2/m) (m+2) 

.2 Now (m + 2 )1/2 < m/2 
for m ? 6, so the right hand side of the last inequality is bounded by e, which the 
left hand side will surely exceed if m ? 16, or M > 18. 

As shown in Turain [2], the 1.85 bound of Theorem 1 can be reduced to 1 for 
M < 5. For M = 3, one can do slightly better. If p3(s) = 0, then 

2 cos (t log 2) + 3 cos (t log 3) = -1, 
(4) 

(2- sin (t log 2) + 3 a sin (t log 3) = 0. 

Squaring and adding, we obtain 

(5) cos (t log 3) = - [(Va + (3) J}/2 = g(a) 

and 

(6) 9 (a) = {6G[log 6 + (log 3)(9' - 4-)]}/2. 

For a < 0, 9` > 4-, so 9'(a) > 0, and for a > 0, log6 > 4Vloga, so 
g'Qi) > 0 for all ar and g(oa) is strictly increasing. From (5), 1 g(a)I < 1, and a de- 
tailed calculation gives -1 and .78788 49110 ... as the limits on a. 

A curious consequence of the above analysis is the following: 
PROPOSITION. If f 7, p3(S) and p3(1 - s) cannot both be zero. 
Proof. Let p3(S) = 0. We can take t ? 0. From the second equation of (4), it 

follows that sin (t log 2) and sin (t log 3) are both zero or both nonzero. If they both 
vanished, we would have t log 2 = klr, t log 3 = jfr, k and j nonnegative integers. 
If t 5 0, (and hence k, j F 0), we can divide these last two equations, obtaining 
log 2/log 3 = k/j, or 3k = 2', which is impossible for k, j > 0. If t = 0, we could de- 
duce from the first equation of (4) that 2 ` + 3` = -1, which is impossible. Hence 
sin (t log 2) and sin (t log 3) are nonzero and we can write 

(3)a- -(sin (t log 3) )/(sin (t log 2)). 

Thus, a is determined as a function of t, so that two distinct values of a- are impossible 
for a given t. 

This shows that if g3(S) is zero off a- -, it cannot happen for the reason 
~3(S) = p3(1 - S) = 0. In Spira [6], it was shown that for t sufficiently large, gi(s) 

and g2(s) satisfy the Riemann hypothesis. In Spira [10], the calculations are de- 
scribed indicating zeros off the critical line of gM(S) for M ? 3. 

3. Method of Calculation. The zeros for M $ 1010 were found by locating a zero 
within a square, searching the square by absolute value tests for small functional 
values with the four possibilities of signs for the real and imaginary parts, closing in 
with linear interpolation, and then a final tightening with a high precision Newton's 
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method. For the zeros with M < 12, it was possible to search the entire strip within 
which the zeros were known to be located. For larger M 5 1010, only the region to 
the right of a = -1 was searched. From the general appearance of the zeros, and 
the fact that the numbers of zeros found are so close to 100(log M)/27r, it seems 
likely that all the zeros for 0 < t < 100 have been found for the M considered. An 
integration was performed over the boundaries of regions searched, verifying the 
number of zeros obtained. 

The zeros for M = 1010 were calculated in a sequence using Newton's method, 
with initial approximants: 

so = 1 + 27ri/log 1010, 

si = 1 + 47ri/log 1010, 

Sm+i = Sm + (Sm - Sm-1). 

For large M, the direct use of series (1) would involve an impractical amount of 
time. Thus, it was necessary to use the asymptotic expansion derived from the 
Euler-McLaurin formula: 

N-i N'8 vls N1 u--_S 3j11- 

M(s) =A n- _ + - - + + 
n=1)-Zl+ 2 1 -5 2 1-s 

M 
Bv 

2v-2 \ 
--2 

+ i (2v ! (s + j) )N 

m 2v-2\ 

e ao n2v ( 

) 

(s + 
j)Mls2v 

+ error. 

One also needs, for Newton's method, a similar asymptotic expansion for AM (s). 

The programs for these were obtained as modifications of programs for A(s) and 
D'(s), available as a separate report [8]. Note that the term Ml-/ (l - s) is very 
large near a = 0, and also changes argument very rapidly as t varies. The direct and 
asymptotic series were checked against each other for M = 100, as were most of the 
other programs. The set of zeros finally obtained was differenced and also resubsti- 
tuted to verify that they were good approximations to the true zeros. The compu- 
tations were carried out at the University Computing Center, University of Ten- 
nessee (NSF-G13581). 

4. The Zeros. For M < 12, the zeros appear to have a pattern which has two 
parts. One part is a line of M - 1 zeros stretching upward in the left half plane with 
a negative slope which increases negatively with M. The other part consists of zeros 
which at first form a line near a = 2, the zeros of CM(S) lying quite close to the zeros 
of A(s), and then this line disappearing in a general scattering or blossoming. For 
M1 = 3, this scattering appears almost immediately, while for increasing M, the 
start of scattering moves progressively upward, being around 70 or 80 units up at 
M = 12. Since 

m B 2v-2 \ 

(s) =m~ r-(s) + M-812 + Ml-8/S1 I E 2V t (s + j)) + 1 
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we can expect a reasonable proximity of the zeros of A(s) and tM_1(S) whenever the 
remaining terms are small. For fixed s, the B2, terms become small when M exceeds 
t/27r (Lehmer [9]). Near a = 2, M1S/(8s - 1) - MlM2/t which will certainly not be 
small when M -- t'. Turning the argument about, we can see that A(s) is roughly 
approximated by SM(S) near the critical line for t < 27rM, but t also large enough so 
that ]1l"2/t is small. 

In Figure 3, one can observe the zeros of CM(S), for successive Al, circling first in 
one direction and then in the other around the zero sO = .5 + 37.586i of c(s) (de- 
noted by a small square). This circling can be explained by setting SM to be such a 
zero, then ~m+l(sM) = (M + 1) M, and SM can be moved slightly to SM so that the 
vectors MSM' have overcome the disturbance (M + 1)SM. The disturbance for 
each M will be approximately M's, and as this rotates depending on M, the zeros 
SM will be rotating one way or another depending on the quadrant of lMi'0. 

The successive lowest zeros, also on Figure 3, appear to have imaginary part 
slightly less than 27r/log M. Thus, the vectors n -s have consecutive arguments 
spread between 0 and 2r - E, for this lowest zero. This appears to be true for every 
M. The real parts appear to be strictly increasing with upper limit 1. 

As noted in Turain [2], every point on the line ar = 1 is an accumulation point of 
the zeros of CM(S), but to see the approach one must proceed to very large M, as in 
Figure 4. For such large Al, the zeros lie on a line which sags to the left between t 
locations of zeros of D(s), and at such t locations there is a forcing to the right as well 
as a shortening of the intervals between zeros. 

Thus, we have described the empirical behavior of the zeros of CM(S). In Turan 
[2] there is given a proof by Jessen that AM(s) 5 0 for M < 5, by showing that 
Re CM(S) > 0 for a > 1. The present author was able to extend this result to M = 6 
and M = 8. However, one cannot show Re p7(S) > 0 for a > 1, but it appears that a 
different method can settle this case. These matters require extensive calculation, 
and further study, and will be taken up in part II of this paper. 

University of Tennessee 
Knoxville, Tennessee 37916 
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